
What you Sculpt is What you Get: Modeling Physical
Interactive Devices with Clay and 3D Printed Widgets

Michael D. Jones
Dept. of Computer Science,

Brigham Young U.
3328 TMCB, Provo, UT 84602

Mike.jones@byu.edu

Kevin Seppi
Dept. of Computer Science

Brigham Young U.
3328 TMCB, Provo, UT 84602

Kevin_seppi@byu.edu

Dan R. Olsen
Dept. of Computer Science

Brigham Young U.
3328 TMCB, Provo, UT 84602

olsen@sparxteq.com

ABSTRACT

We present a method for fabricating prototypes of interactive
computing devices from clay sculptures without requiring
the designer to be skilled in CAD software. The method
creates a “what you sculpt is what you get” process that
mimics the “what you see is what you get” processes used in
interface design for 2D screens. Our approach uses clay for
modeling the basic shape of the device around 3D printed
representations, which we call “blanks”, of physical
interaction widgets such as buttons, sliders, knobs and other
electronics. Each blank includes 4 fiducial markers uniquely
arranged on a visible surface. After scanning the sculpture,
these fiducial marks allow our software to identify widget
types and locations in the scanned model. The software then
converts the scan into a printable prototype by positioning
mounting surfaces, openings for the controls and a splitting
plane for assembly. Because the blanks fit in the sculpted
shape, they will reliably fit in the interactive prototype.
Creating an interactive prototype requires about 30 minutes
of human effort for sculpting, and after scanning, involves a
single button click to use the process.

Author Keywords
Physical computing; 3D printing; prototypes

ACM Classification Keywords
D.2.2 Design Tools and Techniques, H.5.2 User Interfaces.

INTRODUCTION
We envision deployable prototypes of physical computing
devices similar to that shown in Figure 1. These are single
purpose devices that must physically fit into a specific
context. The shape of the devices must fit human form and
motion. For example, the bicycle mounted music player
controller in Figure 1a must be easily accessible by a person
on a bicycle. The steering wheel mounted stereo controls in

Figure 1b must be carefully placed to lie under the thumb of
a hand holding the steering wheel. Similarly, widgets on the
camera controller in Figure 1c should be placed to allow
operation without looking at the device to locate the controls.

An interactive prototype allows the designer to determine if
the shape and interaction will work with human form and
motion. It is difficult to make that assessment when looking
at a rendering on a computer screen. Finally, it is also
important to be able to rapidly iterate the design. The
designer needs to be able to go from idea to working
prototype quickly so that she can work through many
iterations in a short amount of time. Shape alone, is not
sufficient. Interactive devices must integrate with the shape
and the resulting prototypes must be interactively functional
to test usability in context. Finally, it is critical that the
functional prototype preserves the shape and widget
placements as laid out in the sculpture. Otherwise, widgets
may not be correctly placed relative to a user’s finger shape,
position and movement.

A diverse set of prior approaches to prototyping physical
interactive devices share many of these goals. Many of these
projects, such as Gadgeteer [15], Phidgets [5] and d.tools [6]
and many others, present novel electronics and software
systems for building physical interactive devices. We see a
need for better methods for integrating the shape of the
device with the interactive widgets. The Switcharoo [2],
Calder [9], and BOXES [7] projects also describe new
methods for creating the device shape but we aim for more
fidelity and fluidity in design of the shape than found in these
projects.

Savage in Makers' Marks [11] also merges form and function
for interactive 3D printed objects using a process based on
scanning physical representations of sculpted objects. The
maker annotates the object with stickers that represent the
approximate positions of input or output elements such as
buttons or lights. Sticker positions are recovered after
scanning and geometry is added before printing to support
assembly using the required components. Stickers provide
fluidity but not fidelity in the design process. Stickers do not
represent the shape of interactive elements above the surface,
do not represent the volume of components beneath the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI'16, May 07-12, 2016, San Jose, CA, USA
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05 $15.00
DOI: http://dx.doi.org/10.1145/2858036.2858493

http://dx.doi.org/10.1145/2858036.2858493

surface, and may not accurately represent widget locations
on curved surfaces. In some cases the captured shape of the
housing is extended with a boxy protrusion to make room for
components beneath the surface.

Like Makers’ Marks, we see value in scanning physical
representations of interactive widgets but we envision a
process in which the designer works with the actual widget
shapes knowing that any sculpted form can be converted into
a functional prototype exactly as it was sculpted. Precisely
preserving widget placement and device shape is particularly
important when designing a device intended to fit
comfortably in the hand or to have buttons placed under the
fingers when held in a certain way.

Our process begins with sculpting in clay around 3D printed
blanks which represent interactive widgets such buttons,
sliders and knobs. The blanks are partially embedded in the
clay to represent electronics that must fit below the surface
and to expose interactive widgets that lie above the surface.
Blanks can be easily repositioned in the wet clay. The
sculpture is scanned and the scanned mesh is modified to
create an identically shaped 3D printable housing with the
intended widget placements. After assembling widgets in
the housing, the designer has an interactive prototype.

One problem with this process is that there is a significant
amount of geometry processing that happens between
scanning and printing. The triangular mesh created by the
scanner needs to be augmented to support the interactive
widgets and prototype assembly. This processing includes
adding mounting geometry for the widget parts, cutting holes
in the surface for interactive widgets that lie on the surface

and making it possible to assemble widgets in the housing.
Of these steps, adding mounting geometry is particularly
difficult because the geometry must be positioned and
oriented precisely to match widget placement in the
sculpture.

We present an algorithm that searches through the scanned
mesh to find fiducial markers that were 3D printed into the
widget blanks. After finding markers, the algorithm searches
for groups of markers that match marker placement on the
different widget types. Widget type, position and orientation
can be recovered from matching groups of markers and then
the additional structure can be added in the right places. The
process depends on creating several models, included in the
model for the blank, derived from a 3D model of the widget
and its electronics but this only needs to be done once per
widget type. This algorithm allows a designer to convert a
scanned mesh into a prototype housing with one button click.
The prototypes shown in Figure 1were created using this
process. Each prototype required less than 30 minutes of
scanning and was correctly processed by our algorithm.

DESIGN PROCESS
Our approach supports a process in which the design is
created by physical means. In this section we describe this
process and highlight key problems that must be solved to
support that process.

The designer sits at a table with clay and 3D printed blanks
that represent widgets as shown in Figure 2a. In the
photograph, trays of blanks sit to the right of the widgets they
represent. There are also 3D printed blanks to represent

Figure 1 Three examples of physical interactive devices.

Figure 2 Sculpting around printed blanks that represent widgets to make an interactive physical device.

batteries, processors and other elements that might be needed
in the functional prototype.

The designer molds clay around the blanks while leaving
interaction surfaces exposed to create a clay model of the
prototype shown in Figure 2b. This clay model includes the
interactive widgets embedded in the right places for
interaction. In this case, the steering wheel mounted controls
are placed comfortably under the thumb when the hand
grasps the steering wheel.

Sculpting around blanks is a key part of the process. The
resulting prototype will be functional only if the actual
widgets can be implemented in their location as specified in
the sculpted form. It is not useful to allow the designer to
sculpt a housing with a specific placement of widgets only to
later discover that that placement is not feasible in the
sculpted shape. The printed blanks include volume below
the surface to represent the electronics and other parts needed
to implement that element above the surface. Later we
discuss the use of offset surfaces relative to models of
complete widget assemblies as a solution to this problem.

After creating the clay model, the designer scans the
sculpture. We used a scanner with resolution of 0.13 mm.
The locations of the blanks and the widgets they represent
must be recovered from the scanned model and this is done
by first finding fiducial markers in the scan. Markers are
grouped into predefined arrangements printed into the blank.
Blanks were 3D printed using a stereolithography (SLA)
process that has a layer thickness of 0.028 mm and a
resolution of 600 dpi. Printing blanks at lower resolution
using a fusion deposition process (FDM) resulted in
misshaped markers that were difficult to find in the scanned
model. From these groupings the algorithm recovers widget
type, placement and orientation.

The scanned sculpture is processed and printed. The housing
and electronics are shown in Figure 2c. Processing the
scanned mesh involves adding mount points for electronics
and other parts needed to implement a widget, splitting the

housing to provide access to the interior, and adding snaps so
the housing can be closed after assembly.

The designer can then use the prototype in the intended
context as shown in Figure 2d. This allows for evaluation of
shape and functionality in ways that are difficult to do when
looking at a shape on a computer screen or when using a
prototype connected to a workstation by a cable. The
designer can repeat the process either by starting over with a
new sculpture, modifying the existing sculpture or modifying
the scanned model in software.

This design process and the process in Makers’ Marks [11]
share four key elements. Both involve tangible
representation of the device shape, scanning the
representation to recover the shape, recovering interactive
widgets from the scanned model, and the automatic
placement of mounting geometry to support interactive
widgets.

The key difference between the Makers’ Marks design
process and ours is that we represent the physical constraints
of widgets to the designer in a natural way using a 3D printed
blank. Blanks accurately represent a widgets shape above
and below the object surface. Makers’ Marks indicate only
the widgets position using a stickers as markup on the object
surface. In Makers’ Marks the design may have to be
perturbed to accommodate constraints not represented by
stickers.

These two methods offer different design experiences.
Stickers are easy to reposition on the surface while moving a
3D printed blank embedded in clay involves moving the clay,
repositioning the blank, and replacing the clay.
Furthermore 3D printed blanks must be placed inside the
object. In order to properly represent the spacing inside of
the object we do not allow approaches like the taping
together of cardboard tubes as in Makers’ Marks’ box
example [11]. However this approach could be replicated
with more effort by cutting holes in the tubes to place the
printed blanks inside.

The power of our approach lies in the fact that the designer
can manipulate the design without the extra cognitive load of
assessing the internals of the design. Thus if the desired parts
fit in the design, then it will be possible to assemble the
object without further adjustment. Several problems need to
be solved to full enable this “what you sculpt is what you
get” design process based on clay and 3D printed blanks.
These problems are:

• ensuring that widget placements in the sculpture
can be implemented as placed,

• finding fiducial markers in the scanned mesh,
• grouping fiducial markers into individual widget

placements,
• recovering widget type, position and orientation

from widget placement,
• creating the housing by adding mounting points and

Figure 3 In this scanned model of a sculpted prototype,
vertices on fiducial markers are colored red.

• splitting the scanned model for easy assembly and
adding snaps to hold it closed after assembly.

In the following sections we describe how we solved these
problems and share insights gained along the way.

FINDING FIDUCIAL MARKERS
Our process depends on being able to automatically recover
the type, position and orientation of each widget using only
a scanned model (mesh) of the design. To do this we need
to recover the locations of the fiducial markers that identify
each widget type and placement. This involves traversing
the vertices in the mesh and labeling vertices that lie on one
of these markers. Figure 3 shows markers colored red in a
rendering of a scanned model of the sculpture from Figure
2b.

Cones with height 3 mm and a base diameter of 2 mm serve
as markers. We chose cones because they have a single point
with unique curvature. Cylinders also have unique
curvatures, but the unique curvature is found on every point
of the rim rather than just one on the tip. We experimented
with several cone heights and base diameters before using
the 3 mm tall cones with 2 mm bases. Smaller, shorter cones
were difficult to locate in scanned meshes. Larger, taller
cones poked into the designer’s fingers and were more
distracting than smaller cones.

We find the tips of cones in the scanned mesh by analyzing
the slope at each vertex. The scanned mesh consists of
vertices, or points, and edges connected into triangles. At the
tip of a cone, the surface slopes downward in every direction.
The algorithm computes the slope in the direction of the
neighboring vertex. If the slope is downward in every
direction, then that vertex must lie on a cone.

We compute the slope to a vertex as shown in Figure 4. To
find the slope at 𝐴𝐴 in the direction of vertex 𝐵𝐵 we first
compute the vector 𝑛𝑛 which is the normal at 𝐴𝐴. The vector
𝑛𝑛 is perpendicular to the surface at 𝐴𝐴 and is computed by
averaging the normal for the triangles that share 𝐴𝐴 as a
vertex. Given 𝑛𝑛 and 𝐵𝐵 we compute a coordinate system at 𝐴𝐴
in which 𝑛𝑛 points in the positive 𝑧𝑧 direction and 𝑥𝑥 is
perpendicular to 𝑧𝑧 but parallel to the line that connects 𝐴𝐴 and
𝐵𝐵. In Figure 4 the 𝑥𝑥 axes from 𝐴𝐴 to each of the other vertices
are shown in red. We project the position of 𝐵𝐵 into this
coordinate system and then compute 𝑑𝑑𝑥𝑥, the change in 𝑥𝑥, and
𝑑𝑑z, the change in 𝑧𝑧, from 𝐴𝐴 to 𝐵𝐵. The slope from 𝐴𝐴 to 𝐵𝐵 is
𝑑𝑑𝑧𝑧/𝑑𝑑𝑥𝑥.

We repeat the process for neighboring vertices 𝐵𝐵,𝐶𝐶,𝐷𝐷 and 𝐸𝐸
(and for vertices not shown in the illustration). For each
neighbor we compute a new coordinate system in which 𝑥𝑥 is
parallel to the line from 𝐴𝐴 to the neighbor, and then compute
the slope 𝑑𝑑𝑧𝑧/𝑑𝑑𝑥𝑥 in that coordinate system.

After computing the slope in each direction we check that
each slope is within the range -0.6 to -1.5. If any slope is
outside this range then there is a direction on the surface in

which the slope is too flat or too steep for that vertex to lie
on the tip of a scanned fiducial marker.

We tried classifying vertices using an estimate of signed
mean curvature. The signed mean curvature is the average of
the principle curvatures at a vertex. The principle’s
curvatures are the largest and smallest local curvatures, and
the local curvatures are precisely the slopes computed using
𝑑𝑑𝑧𝑧/𝑑𝑑𝑥𝑥 as described above. But signed mean curvature loses
too much information and misclassifies more vertices than
the threshold method described above. A key feature of a
vertex on a bump is that all normal curvatures lie within a
given range not just that the average of the minimal and
maximal normal curvature.

We compute the slope to the neighbors two edges away from
a vertex rather than using vertices only one edge away. In
Figure 4 this means we use the slope to the vertices circled
in blue rather than vertices 𝐵𝐵,𝐶𝐶,𝐷𝐷 and 𝐸𝐸. This gives a larger
span over which to estimate slope, and makes the algorithm
less sensitive to noise. This decision depends on the mesh
being at a certain resolution relative to the size of the bumps
in a blank. It works well when a vertex on a bump top has at
least 2 generations of neighbors that also lie on the bump.

This method for finding vertices on fiducial markers is
insensitive to changes in mesh resolution. Reducing the
resolution of the mesh matters because processing a mesh
with fewer vertices takes less computational time and
memory. The mesh resolution reduction algorithm we used
preserves a dense collection of vertices on curvy parts of the
mesh and leaves a sparse collection of vertices in flat areas.
This is because one flat triangle approximates a flat plane just
as well as many flat triangles. Because the fiducial markers
are curvy, they are left with many vertices which simplifies
labeling vertices that lie on them.

Figure 4 Close up view of mesh vertices on a scanned fiducial
marker. We locate vertices on the marker by computing the

slope from a vertex to neighboring vertices.

The algorithm often finds several vertices per bump in the
scanned mesh. For example in Figure 4 vertices 𝐵𝐵,𝐶𝐶,𝐷𝐷 and
𝐸𝐸 might also be labeled as lying on bumps. In our approach
it is better to identify several vertices on bumps than to miss
all of the vertices on a bump. Finding several vertices per
bump causes the widget location algorithm to find many
widget placements (15 is average) per actual widget blank
embedded in the mesh. This happens because each vertex on
each bump can be grouped with several vertices on other
bumps to create a valid placement. Figure 5 shows vertices
labeled on a marker and the connections found on
neighboring markers. Each colored line is part of a different
widget placement found by the algorithm. We handle these
duplicate placements by merging placements that are in close
proximity as described in the next section.

Cones used as fiducial markers can be reliably located in the
scanned model and this supports recovery of widget type,
placement and orientation. Recovering widget placement
information is a necessary step in automatically converting a
scanned sculpture into an interactive prototype with working
widgets.

FINDING WIDGET PLACEMENTS
Finding fiducial markers alone does not identify the type or
placement of widgets. What we need to know is which
groups of markers represent a widget placement. The
algorithm that groups markers into placements should ignore
mislabeled vertices that do not actually lie on markers and
should find only the valid widget placements.

Figure 6 shows widget positions and orientations recovered
from vertices marked on the scanned mesh. Markers are
highlighted with colored balls, the plane of the widget is
shown with a blue triangle and a vector perpendicular to the
plane is shown in purple. Other colors in the image
correspond to the vertex order and will be explained in the
next section.

The grouping algorithm searches through combinations of
labeled vertices to find groups that match the relative
positions of markers printed into widgets. The markers on a

widget are always arranged into unique asymmetric groups
of 4 markers.

Although 3 markers are sufficient to recover position and
orientation, we use 4 markers per widget. Using 4 markers
rather than 3 eliminates many false positives when finding
widget placement. With 3 bumps there are 3 distances to
check. With 4 bumps there are 6 distances to check between
every pair of bumps. Checking more distances allows the
algorithm to exclude more spurious placements.

When checking distances between markers, the algorithm
has a tolerance of 0.7 mm. In our tests, we found that about
75% of the distances between vertices on bumps in a widget
placement were within 0.5 mm of the expected distance. The
other 25% of the distances were between 0.5 and 0.7 mm of
the actual distance with larger errors over larger distances.

The algorithm searches through every feasible ordered
combination of up to 4 vertices starting with ordered pairs of
2 labeled vertices. We reduce the search space by only
searching through labeled vertices that are close enough to
the starting vertex. If the greatest distance between two
bumps on a widget blank is 31 mm then we only search
through labeled vertices within 31.7 mm of a given vertex.
The additional 0.7 mm accounts for tolerance in distance
matching.

After finding all widget placements the algorithm merges
placements in which the center of the placement is closer
than 2 mm to the center of another placement. In most cases
the actual distance between any two placement centroids is
either less than 1 mm or greater than the width of a widget
blank on the surface. Merging nearby placements smooths
out noise in the widget placements found when several
vertices are marked on each marker location.

Finding the widgets in the scanned sculpture is the key step
in supporting a design process that includes widgets
embedded into clay models. With the bump grouping and

Figure 5 Each colored line connects a marked vertex to 3 other
marked vertices with together represent a widget placement.
Duplication is due multiple labeled vertices on each marker.

Figure 6 Widget placements recovered by searching for
properly spaced clusters of 4 markers and then merging

duplicate cluster that lie in close proximity.

placement information, we now have what we need to
compute widget placement.

RECOVERING WIDGET TYPE AND ORIENTATION
In order to save designer time and effort by automatically
placing widget mounts, the algorithm needs to know the type
and orientation of the widgets. This information needs to be
recovered from the 4 fiducial markers that represent the
widget placement.

The widget type is encoded by a unique arrangement of the
4 markers. In this scheme the 4 markers printed into any
given widget are positioned at different distances from each
other than the 4 markers on any other widget.

After recovering the widget type, the algorithm keeps only
the first 3 marker locations rather than all 4. Each marker is
numbered and the number is used to compute orientation.
We recover vertex numbers from the distances between
fiducial markers. The distance between every pair of
markers is different for a given widget type. Once the four
markers are found, it is simple to match the distances and
recover the marker numbers. The plane of the widget
placement is defined by markers 1 through 3. In Figure 6
each blue ball gives the location of marker 1 for each widget
placement. The yellow line connects marker 1 to 2 and the
magenta line connects marker 1 to 3. The plane is shown by
the blue triangle. The widgets at the top of the model are
both buttons but one is rotated 180 degrees compared to the
other. The bottom widget is a slider

The markers used to determine the plane of the placement
should be as far apart as possible, should not lie in a single
line and should form a right triangle if possible. This gives
a larger basis for defining the plane and is less sensitive to
noise introduced in scanning.

Given widget placement, orientation and type, the algorithm
can now modify the scanned mesh to create a 3D printable
housing for the prototype. This will save designer time and
effort as the designer does not need to make these
modifications by hand.

MODELING WIDGETS
Prototyping with printed widget blanks embedded in clay
requires building two models based on the widget geometry.
These models ensure that the widget can be implemented in

the space allotted and provide fiducial markers for recovery
of placements.

Modeling the widgets is not part of the prototype
construction process but needs to be done before the process
begins. It needs to be done once per widget type and requires
CAD skills. Widget models are based on an accurate 3D
representation of the widget which includes everything
needed to interact with the widget and to implement the
widget.

Several additional models are derived from the base widget
model. These are shown in Figure 7 with a composite view
on the left. The base widget model is shown in blue. The
base model is in this figure is a knob implemented using a
potentiometer. The mounting bracket is a plate shown in
solid orange. This widget attaches to the housing by
attaching it to that plate. Other widgets have more complex
mounting geometry and this would be included as part of the
mounting bracket. The grey box is called the “slug” and used
to cut a hole in the housing to accommodate the mounting
bracket. The printed blank that represents this widget
consists of the mounting bracket and the yellow offset mesh.

The yellow geometry below the plate is a mesh offset by 3
mm from the widget in order to allow space for the widget in
the sculpture interior. In this context, offsetting the mesh
means moving every vertex in the mesh 3 mm along that
vertex’s normal. The offset vertices are remeshed to create
a mesh that is 3 mm from the original mesh. Adding this
offset to the printed blank allows the designer to sculpt down
to the printed widget model while still leaving room for the
housing wall to enclose the widget. Without this offset the
designer must guess where the widget is inside the opaque
modeling clay.

The four fiducial markers need to be added to the visible
parts of the orange plate or the visible parts of the blue model
above the orange plate. If the 4 markers do not lie on the
plane of the orange plate then the widget model must also
include the angles between the plane of the first 3 markers
and the plane of the orange plate.

Figure 7 Widget, blank, and slug models for a potentiometer knob.

We also include 3D printed blanks to represent additional
electronic components, such as a processor or a battery, that
are completely enclosed in the housing. These blanks are
included in the sculpture to make sure that there will be
enough space for those parts in the printed prototype without
modifying the housing shape. For the devices shown in this
paper, we used blanks to represent the volume of an Arduino
processor and a battery and embedded those in the sculpture.

We do not locate the blanks that represent embedded
electronic components that lie completely within the housing
because they are hidden beneath the surface. We also do not
add mounting brackets for these elements. Instead, the
designer must remember which enclosed electronics belong
in the housing and place them by hand.

The blank, slug, bracket and parts should be stored in the
same coordinate space in the positions relative to each other.
By convention, we stored the widget with the tip of marker 1
on the origin and the tip of marker 2 on the positive 𝑥𝑥 axis.
Markers 1, 2, and 3 all lie on the 𝑥𝑥𝑥𝑥 plane. The vector created
by taking the cross product of the vectors connecting marker
1 with 2 and 1 with 3 points in the positive 𝑧𝑧 direction. This
relative placement and alignment is important because it
means we know the position and orientation of the parts
when they are read into the scanned model space. Any
alignment with the model coordinate system will suffice, but
it must be unambiguous.

The widget and associated models can now be used in their
printed form in sculpting and can be loaded in digital form to
prepare the prototype housing for printing and assembly.
The investment in modeling time and effort needed to create
the widget models pays of in time and effort saved later
during prototyping.

CREATING A HOUSING FOR THE PROTOTYPE
Creating a housing involves 4 steps: cutting holes for the
interactive elements that support widgets, splitting the
housing to allow assembly, adding snaps so the housing can
be closed after assembly, and adding mounting brackets and
other parts for each widget. These steps are shown in Figure
8, as will be explained in the text below, beginning with the
scanned sculpture in Figure 8a and ending with the final
printable housing in Figure 8d.

Cutting holes for widgets. Holes need to be cut so that
interactive widgets can be exposed on the prototype surface.
For each widget placement, the algorithm loads the slug, this
is the grey box in Figure 7, which encloses all of the volume

needed for interactive elements and for mounting brackets.
This slug is shown in brown in Figure 8b. The holes are
created by a Boolean subtraction operation which subtracts
the slug from the scanned mesh. The holes are visible in
Figure 8c (which also shows the housing split into two pieces
for assembly).

Splitting the housing. Assembling widgets for the interactive
prototype requires access to the interior of the housing. We
provide that access by splitting the housing into two pieces.
The split must provide a large opening through which
electronics can be moved into position. We find a plane for
splitting the housing by evaluating 1600 different planes that
intersect the housing. Figure 9 shows the feasible planes
explored for a mesh with the final selection shown in red. A
splitting plane is feasible if it passes through the mesh inner
and outer walls and does not intersect a hole cut for widget
placement. The optimal splitting plane creates the largest
opening in the housing. The area of the opening is the area
of the polygon created on the plane when the mesh is
intersected with the plane. The plane with the largest area is
selected and used to split the housing mesh.

Adding snaps. The housing pieces need to be fastened back
together after assembly. The algorithm adds between 6 and
12 post and hole pairs to the matching faces created by
splitting the housing. The posts and holes can be seen
Figures 8c and 8d. Posts with radius 1.3 mm proved durable
in assembly and reassembly of the printed housing. Larger

Figure 8 Creating a 3D printable housing from a scanned mesh of sculpted prototype.

Figure 9 Finding a plane to split the housing. The red
plane was selected from the feasible candidates shown in

yellow.

posts would have been more durable but posts and holes need
to be small enough to fit on the rim created in the mesh wall.

The hole radius is 0.35 mm larger than the post radius so that
the printed post makes a friction fit into the printed hole1.
The friction fit was tightest when the housing was printed
with the plane of the rim parallel to the plane of the print
head. Small ridges created in the layer by layer deposition
process left small ridges in the post and hole and these ridges
fit snugly together with the 0.35 mm tolerance. Other 3D
printing process may require different approaches to adding
snaps.

Placing brackets. Brackets and other printed pieces needed
to implement widgets are added next. These are shown in
green in Figure 8d and correspond to the orange bracket in
Figure 7. The geometry for brackets and other pieces for
each widget placement are loaded, rotated and translated into
position. Brackets are joined to either the top or bottom of
the split housing using a Boolean union operation. Moving
parts that are not attached to the housing are simply left in
place to be printed in place.

These modifications to the mesh yield a housing for a
functional prototype that is ready for printing and assembly.

EXAMPLES
We have constructed several interactive physical computing
prototypes using this process. Prototypes were created by
two undergraduate university design students who are part of
the research team but who did not write any of the software
described above. In each case sculpting required less than
30 minutes of the designer’s time, converting the scanned
mesh into a printable housing required pressing a button to
start the algorithm. The algorithm correctly found widget
placement, orientation and type and then prepared the
housing for printing and assembly. All sculptures were
assembled into functional prototypes. These prototypes are
each shown in Figure 1. Four other devices were sculpted by
different users and correctly processed by the algorithm to
create housings that could be printed and assembled.

Each prototype involves a different hand position relative to
the interactive widgets. This means that each prototype
shape accommodates different motion of the fingers, hand or
arm. Sculpting gives the designer tactile feedback on
position and shape needed to support each motion in each
context. The camera remote is hand-held. The bike mounted
mp3 player control requires moving the arm to access the
controls. The steering wheel mounted controller only
requires moving the thumb.

Bike mounted mp3 player controls. Using this device
involves moving the entire arm while seated on a bicycle.

1 When printed on a Stratasys Dimension Elite at a layer
resolution of 0.25 mm.

During sculpting the designer sat on a bicycle with the clay
wrapped around the bicycle tube that connects the handle
bars to the seat (this tube is called the “top tube”). This let
the designer check the required arm motion in context. The
sculpture wrapped just less than half way around the top tube
so that it could be removed for scanning without cutting or
moving the clay. The printed controller was attached to the
top tube using a thin layer of wet clay. This was sufficient
for short test rides (as seen in Figure 1) but double sided foam
tape or a stronger adhesive might be needed for longer term
testing.

Placing the controller on the top tube is reminiscent of
placement of bike gear shifters on the tube connecting the
handlebars to the crank arm assembly (this is called the
“down tube”). More recent bicycle models put shifters on
the handlebars. After testing the interactive prototype on a
bicycle ride the designer might decide to place the controls
on the handlebars, the down tube, or somewhere else. In
either case, designing a new prototype likely involves
another 30 minutes of sculpting and pressing a button to
create the housing.

Steering wheel mounted mp3 player controls. Unlike the
bike mp3 player controller, the steering wheel mounted
version does not require moving the entire arm. Placing the
controller in the right position on the steering wheel itself
allows it to be used with the thumb without changing the
hand’s grip on steering wheel.

Sculpting the controller shape saved time in two ways in this
example. First, the clay and widget models could be pressed
into a hole cut in the steering wheel. This gave the prototype
housing a shape that would fit in the cut out. Achieving this
fit in a CAD tool would require more time. Second, it was
easy for the designer to hold the steering wheel with the

Figure 10 A widget set together with printed blanks used in
sculpting. The widgets are a button on the top left, a knob on
the top right and a slider on bottom. The button includes a
complex mounting bracket printed in white and a moving

plunger.

sculpture in place and test the thumb motion needed to reach
the controls.

An interactive prototype of this controller intended to fit a
different steering wheel could also be constructed by forming
clay on that steering wheel and would likely involve only 30
minutes of sculpting time.

Camera remote. This prototype is a handheld camera remote
control. The intended use is to be held in the photographer’s
hand while they move away from a camera to compose a
picture or to be in a picture. The prototype includes a slider
under the thumb for controlling zoom and a button under the
index finger for taking a picture. It should be usable while
looking at the composition or at the camera itself. This
means that the interactive widgets should lie under the
fingers for easy use without looking at those widgets.

Sculpting around the printed widget models let the designer
quickly and accurately place controls under fingers when the
device held in the hand. The sculpture required less than 20
minutes to create which was the shortest amount of time
across all examples. The final shape was rough but could be
refined in either clay or software if testing the functional
prototype confirmed that this was a useful application.

A WIDGET SET
Constructing interactive prototypes required a widget set.
We need a widget set that keeps the prototype design cycle
fast and simple while preserving the feel of interaction with
physical objects. This meant using widgets that are simple
to assemble, can be printed in any orientation, and which
provide good haptic feedback.

After reviewing several widget sets for 3D printed prototypes
(see [8, 9, 11] for recent examples) we designed our own
widget set based heavily on using existing electronics to
convert interaction into electrical signals. Using existing
electronics gave up some flexibility in design options but led
to simple assembly while providing good haptic feedback.
In principle, 3D printable blanks, brackets and slugs as
described earlier could be designed and for any of the
widgets in [10, 12, 14]. Having a collection of blanks for
these widgets on hand would allow the designer to quickly
switch between widget types depending on the needs of a
project.

The widget set contains a button, a slider, and a knob. Figure
10 shows the widgets together with the printed form used in
sculpting. The knob is a potentiometer knob, the slider is a
potentiometer slider and the button is a clickable button on a
breakout board2. The button includes a mounting bracket to
hold the breakout board in place, a moving plunger and an
enclosure. Choosing a pre-made potentiometer slider limited
our designs to straight run sliders with limited lengths.

2 We used a 10k Ohm rotary potentiometer knob (Sparkfun
part 09939), small 10k linear taper potentiometer slides
(11602), and a mini push button switch (97).

Custom printed sliders would have allowed for curved paths
and more flexibility in length. We added additional haptic
feedback to the button by placing two ring magnets with
polarity mismatched on the button plunger shaft. The
magnets are placed in the enclosure after printing. This
creates a force that restores the button to its idle position after
a button press. We also explored several print-in-place
options for providing haptic feedback with the button but the
motion varied widely with the print orientation relative to the
plane of the 3D printer tray.

All widgets are connected to an Arduino board3 with
Bluetooth. The Arduino board provides power, ground and
processes signals from each widget. The Arduino board
sends events over Bluetooth to a host for processing.

RELATED WORK
Our work builds on ideas from Switcheroo [1] and Calder
[9]. Each of these projects was focus on how to integrate
interactive devices with physical shape design. In
Switcheroo, passive RF tags could be pinned to a foam
surface to place interactive widgets. The Calder project took
a similar approach, but involved pinning actual electronic
elements to foam. This meant that interactive widgets could
be quickly repositioned as the designer explored the feel of
the placement of each element. In Calder however,
interactive elements protrude from the surface unless the
designer creates a cavity in which to embed electronics. This
cavity fixes the widget placement and eliminates fluid
repositioning. Working with clay, and an oil-based clay in
particular, allows the widget to be embedded in the object
and to be repositioned as needed. Printing a representation
of the widget ensures that elements beneath the surface will
fit in the prototype.

Hartmann and Klemmer [6, 8] frame physical design as
conversations with the design medium such as clay, paper or
foam core, and point to Schoen's reflective practice [13] as a
foundation. They were focused on device integration and
software and argue that iteration through prototypes is
important for designers to understand a problem. Our work
shares this foundation but we focus more on integrating the
physical shape with the interactive electronics.

The BOXES project merges form and function early in
prototyping physical interactive objects [7]. Clever use of
cardboard, foil, thumbtacks and masking tape allows a
designer to quickly iterate through different shapes and place
buttons on those shapes. Our process is a bit less fluid than
cutting cardboard, but supports a richer set of shapes and
interaction methods beyond buttons. As with some of the
other work, the prototype was a mass of tethered wires that
was impossible to deploy in a realistic context.

3 A RedBearLab Blend Micro Arduino board.

Savage et al. in Makers’ Marks [11] merge form and
functionality in the context of 3D scanning and printing.
Approximate widget positions and widget types are
recovered by using SIFT and RANSAC to recognize fiducial
marks printed on stickers. Our process uses only the sculpted
object geometry and does not require recovering the
sculpture’s surface color and does not use image processing.
Makers’ Marks supports mechanical elements such as
hinges. In principle our process could as well by embedding
3D printed representations of hinges in the clay.

deForm [4] combines the expressiveness of clay with digital
interaction using a pair of structured light scanners. While
the process is limited to 2.5D deformed surfaces rather than
arbitrary 3D shapes, the process may support a fluid
environment for creating and modifying interactive physical
devices.

In DisplayObjects Akaoka et al. [1] also argue for early
merger of prototype form and interaction, but take a different
approach based on projecting interfaces onto solid objects.
This leads to interesting simulations but is not deployable
into usable scenarios.

Many projects have constructed sets of interactive widgets
for physical computing and prototypes. They differ
primarily in the mechanism used to detect interaction.
Interaction has been created using sound [12], pneumatics
[14], light [10] and of course electricity [15, 4]. Our focus
is different however. Our focus is on supporting the creation
of shapes to house the interactive elements, and to do so in
such that the shape fits human form and motion. In principle,
any widget set could be used with our process given
appropriate modeling of each widget. Voodoosketch [3]
merges physical widgets with sketched interfaces on
interactive surfaces but does not contemplate 3D interactive
physical devices.

SUMMARY AND FUTURE WORK
Sculpting keeps physicality in prototype design. We
presented a fast and simple method for converting a scan of
the sculpture into a printable interactive prototype. The
method eliminates CAD skills from the process. The
algorithms described were implemented in C# to run in the
RhinoCommon API in Rhinoceros 54.

This method depends on printing 4 cone shaped fiducial
markers into models of widgets embedded into the sculpture.
Vertices with negative local slope in every direction are
labeled as lying on fiducial markers because cone tips have
negative local slope in every direction. We group labeled
vertices into widget placements by matching the distance
between groups of markers against marker locations on each

4 See www.rhino3d.com

widget. Widget type and orientation are recovered from the
groups of 4 markers. Finally, the scanned mesh is modified
based on the widget types, locations and orientations. The
printed housing can be combined with electronics to make an
interactive prototype.

A key factor in saving designer time and effort is that if
widget blanks fit in the sculpture then widget electronics and
parts will fit in a housing with the same shape and size. This
prevents sculpting a shape and placing widgets that later
prove to be infeasible for the given shape.

Future advances in 3D scanning and printing technology will
significantly improve this prototyping process. Scanning
and printing sculpted prototypes require significant time and
effort. Preparing hollowed out scans of sculptures in our
example required about 30 minutes of focused effort over the
course of an hour by an experienced user5. The housings in
our examples required 8 to 12 hours each to print. The
designer is free to do something else while they wait, but this
adds time to the prototype iteration cycle.

There is no guarantee that the splitting plane found by our
algorithm will result in an opening that allows electronics to
be inserted into the housing. The algorithm worked well in
all of our examples—even though designers were not told to
consider the feasibility of splitting the housing for assembly.
Several methods could be explored to ensure that the split
allows assembly. The housing could be split with a curved
surface that would allow more possibilities. The function for
scoring candidate splits consider the size of the largest object
that will through an opening rather than just the area of the
opening. In some cases it may be necessary to split the
housing into more than 2 pieces.

ACKNOWLEDGEMENTS
This work was supported by National Science Foundation
grant IIS-1406578. David Brandt designed the widget set
used in this paper.

REFERENCES
1. Akaoka, E., Ginn, T., Vertegaal, R., 2010.

DisplayObjects: prototyping functional physical
interfaces on 3d styrofoam, paper or cardboard models.
In: Proceedings of the fourth international conference on
Tangible, embedded, and embodied interaction. ACM,
pp. 49–56.

2. Avrahami, D., Hudson, S. E., 2002. Forming
interactivity: a tool for rapid prototyping of physical
interactive products. In: Proceedings of the 4th
conference on Designing interactive systems: processes,
practices, methods, and techniques. ACM, pp. 141–146.

3. Block, F., Haller, M., Gellerson, H., Gutwin, C., and
Billinghurst, M. 2008. VoodooSketch: Extending

5 Using a NextEngine 3D Scanner HD with ScanStudio HD
Pro software and netfabb Professional for repairing and
hollowing out the mesh.

interactive surfaces with adaptable interface palettes. In
Proceedings of the 2nd International Conference on
Tangible and Embedded Interaction (TEI’08). ACM. pp.
55-58.

4. Follmer, S., Johnson, M., Adelson, E., and Ishii, H.,
2011. deForm: an interactive malleable surface for
capturing 2.5D arbitrary objects, tools and touch. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology (UIST '11).
ACM, New York, NY, USA, pp. 527-536.

5. Greenberg, S., Fitchett, C., 2001. Phidgets: easy
development of physical interfaces through physical
widgets. In: Proceedings of the 14th annual ACM
symposium on User interface software and technology.
ACM, pp. 209–218.

6. Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla,
L., Burr, B., Robinson-Mosher, A., Gee, J., 2006.
Reflective physical prototyping through integrated
design, test, and analysis. In: Proceedings of the 19th
annual ACM symposium on User interface software and
technology. ACM, pp. 299–308.

7. Hudson, S. E., Mankoff, J., 2006. Rapid construction of
functioning physical interfaces from cardboard,
thumbtacks, tin foil and masking tape. In: Proceedings
of the 19th annual ACM symposium on User interface
software and technology. ACM, pp. 289–298.

8. Klemmer, S. Hartmann, B., and Takayama, L. 2006.
How bodies matter: five themes for interaction design.
In Proceedings of the 6th conference on Designing
Interactive systems (DIS '06). ACM, New York, NY,
USA, 140-149.

9. Lee, J., Avrahami, D., Hudson, S., Forlizzi, J., Dietz, P.
and Leigh, D. “The Calder toolkit: wired and wireless
components for rapidly prototyping interactive devices”

in Processings of the 5th Conference of Designing
Interactive Systems: Processes, Practices, Methods and
Techniques. 2004. pp. 167-175.

10. Savage, V., Chang, C. and Hartmann, B. “Sauron:
Embedded single-camera sensing of printed physical
user interfaces” ACM Symposium on User Interface
Software and Technology (UIST ’13). 2013.

11. Savage, V., Follmer, S., Li, J., and Hargmann, B. 2015.
Makers’ Marks: Physical markup for designing and
fabricating functional objects. In: Proceedings of the
28th Annual Symposium on User Interface Software and
Technology (UIST’15). ACM. pp. 103-108.

12. Savage, V., Head, A., Hartmann, B., Goldman, D. B.,
Mysore, G., Li, W., 2015. Lamello: Passive acoustic
sensing for tangible input components. In: Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. ACM, pp. 1277–1280.

13. Shön, E. 1984. The Reflective Practitioner: How
Professionals Think in Action. Basic Books.

14. Vázquez, M., Brockmeyer, E., Desai, R., Harrison, C.,
Hudson, S. E., 2015. 3d printing pneumatic device
controls with variable activation force capabilities. In:
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. ACM, pp.
1295–1304.

15. Villar, N., Scott, J., Hodges, S., Hammil, K., Miller, C.,
2012. .net gadgeteer: a platform for custom devices. In:
Pervasive Computing. Springer, pp. 216–233.

	What you Sculpt is What you Get: Modeling Physical Interactive Devices with Clay and 3D Printed Widgets
	ABSTRACT
	We present a method for fabricating prototypes of interactive computing devices from clay sculptures without requiring the designer to be skilled in CAD software. The method creates a “what you sculpt is what you get” process that mimics the “what yo...
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	Design Process
	Finding Fiducial Markers
	Finding Widget Placements
	Recovering WIdget Type and Orientation
	Modeling Widgets
	Creating A Housing for the PRototype
	Examples
	A Widget SET
	Related Work
	Summary and Future Work
	acknowledgements
	REFERENCES

