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ABSTRACT 

We present a method for fabricating prototypes of interactive 
computing devices from clay sculptures without requiring 
the designer to be skilled in CAD software.  The method 
creates a “what you sculpt is what you get” process that 
mimics the “what you see is what you get” processes used in 
interface design for 2D screens.  Our approach uses clay for 
modeling the basic shape of the device around 3D printed 
representations, which we call “blanks”, of physical 
interaction widgets such as buttons, sliders, knobs and other 
electronics.  Each blank includes 4 fiducial markers uniquely 
arranged on a visible surface.  After scanning the sculpture, 
these fiducial marks allow our software to identify widget 
types and locations in the scanned model.  The software then 
converts the scan into a printable prototype by positioning 
mounting surfaces, openings for the controls and a splitting 
plane for assembly.  Because the blanks fit in the sculpted 
shape, they will reliably fit in the interactive prototype. 
Creating an interactive prototype requires about 30 minutes 
of human effort for sculpting, and after scanning, involves a 
single button click to use the process.   
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INTRODUCTION 
We envision deployable prototypes of physical computing 
devices similar to that shown in Figure 1.  These are single 
purpose devices that must physically fit into a specific 
context.  The shape of the devices must fit human form and 
motion.  For example, the bicycle mounted music player 
controller in Figure 1a must be easily accessible by a person 
on a bicycle.  The steering wheel mounted stereo controls in 

Figure 1b must be carefully placed to lie under the thumb of 
a hand holding the steering wheel.  Similarly, widgets on the 
camera controller in Figure 1c should be placed to allow 
operation without looking at the device to locate the controls.   

An interactive prototype allows the designer to determine if 
the shape and interaction will work with human form and 
motion.  It is difficult to make that assessment when looking 
at a rendering on a computer screen.  Finally, it is also 
important to be able to rapidly iterate the design.  The 
designer needs to be able to go from idea to working 
prototype quickly so that she can work through many 
iterations in a short amount of time.  Shape alone, is not 
sufficient. Interactive devices must integrate with the shape 
and the resulting prototypes must be interactively functional 
to test usability in context. Finally, it is critical that the 
functional prototype preserves the shape and widget 
placements as laid out in the sculpture.   Otherwise, widgets 
may not be correctly placed relative to a user’s finger shape, 
position and movement.  

A diverse set of prior approaches to prototyping physical 
interactive devices share many of these goals.  Many of these 
projects, such as Gadgeteer [15], Phidgets [5] and d.tools [6] 
and many others, present novel electronics and software 
systems for building physical interactive devices.  We see a 
need for better methods for integrating the shape of the 
device with the interactive widgets.  The Switcharoo [2], 
Calder [9], and BOXES [7] projects also describe new 
methods for creating the device shape but we aim for more 
fidelity and fluidity in design of the shape than found in these 
projects. 

Savage in Makers' Marks [11] also merges form and function 
for interactive 3D printed objects using a process based on 
scanning physical representations of sculpted objects.  The 
maker annotates the object with stickers that represent the 
approximate positions of input or output elements such as 
buttons or lights.  Sticker positions are recovered after 
scanning and geometry is added before printing to support 
assembly using the required components.  Stickers provide 
fluidity but not fidelity in the design process.  Stickers do not 
represent the shape of interactive elements above the surface, 
do not represent the volume of components beneath the 
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surface, and may not accurately represent widget locations 
on curved surfaces.  In some cases the captured shape of the 
housing is extended with a boxy protrusion to make room for 
components beneath the surface.   

Like Makers’ Marks, we see value in scanning physical 
representations of interactive widgets but we envision a 
process in which the designer works with the actual widget 
shapes knowing that any sculpted form can be converted into 
a functional prototype exactly as it was sculpted.  Precisely 
preserving widget placement and device shape is particularly 
important when designing a device intended to fit 
comfortably in the hand or to have buttons placed under the 
fingers when held in a certain way.   

Our process begins with sculpting in clay around 3D printed 
blanks which represent interactive widgets such buttons, 
sliders and knobs.  The blanks are partially embedded in the 
clay to represent electronics that must fit below the surface 
and to expose interactive widgets that lie above the surface.  
Blanks can be easily repositioned in the wet clay.  The 
sculpture is scanned and the scanned mesh is modified to 
create an identically shaped 3D printable housing with the 
intended widget placements.  After assembling widgets in 
the housing, the designer has an interactive prototype.     

One problem with this process is that there is a significant 
amount of geometry processing that happens between 
scanning and printing.  The triangular mesh created by the 
scanner needs to be augmented to support the interactive 
widgets and prototype assembly.  This processing includes 
adding mounting geometry for the widget parts, cutting holes 
in the surface for interactive widgets that lie on the surface 

and making it possible to assemble widgets in the housing.  
Of these steps, adding mounting geometry is particularly 
difficult because the geometry must be positioned and 
oriented precisely to match widget placement in the 
sculpture.  

We present an algorithm that searches through the scanned 
mesh to find fiducial markers that were 3D printed into the 
widget blanks.  After finding markers, the algorithm searches 
for groups of markers that match marker placement on the 
different widget types.  Widget type, position and orientation 
can be recovered from matching groups of markers and then 
the additional structure can be added in the right places.  The 
process depends on creating several models, included in the 
model for the blank, derived from a 3D model of the widget 
and its electronics but this only needs to be done once per 
widget type.   This algorithm allows a designer to convert a 
scanned mesh into a prototype housing with one button click.  
The prototypes shown in Figure 1were created using this 
process. Each prototype required less than 30 minutes of 
scanning and was correctly processed by our algorithm.   

DESIGN PROCESS  
Our approach supports a process in which the design is 
created by physical means. In this section we describe this 
process and highlight key problems that must be solved to 
support that process.    

The designer sits at a table with clay and 3D printed blanks 
that represent widgets as shown in Figure 2a.  In the 
photograph, trays of blanks sit to the right of the widgets they 
represent.  There are also 3D printed blanks to represent 

Figure 1 Three examples of physical interactive devices. 

Figure 2 Sculpting around printed blanks that represent widgets to make an interactive physical device. 



batteries, processors and other elements that might be needed 
in the functional prototype.   

The designer molds clay around the blanks while leaving 
interaction surfaces exposed to create a clay model of the 
prototype shown in Figure 2b.  This clay model includes the 
interactive widgets embedded in the right places for 
interaction.  In this case, the steering wheel mounted controls 
are placed comfortably under the thumb when the hand 
grasps the steering wheel.   

Sculpting around blanks is a key part of the process.  The 
resulting prototype will be functional only if the actual 
widgets can be implemented in their location as specified in 
the sculpted form.  It is not useful to allow the designer to 
sculpt a housing with a specific placement of widgets only to 
later discover that that placement is not feasible in the 
sculpted shape.   The printed blanks include volume below 
the surface to represent the electronics and other parts needed 
to implement that element above the surface.  Later we 
discuss the use of offset surfaces relative to models of 
complete widget assemblies as a solution to this problem. 

After creating the clay model, the designer scans the 
sculpture.   We used a scanner with resolution of 0.13 mm.  
The locations of the blanks and the widgets they represent 
must be recovered from the scanned model and this is done 
by first finding fiducial markers in the scan.  Markers are 
grouped into predefined arrangements printed into the blank.  
Blanks were 3D printed using a stereolithography (SLA) 
process that has a layer thickness of 0.028 mm and a 
resolution of 600 dpi.  Printing blanks at lower resolution 
using a fusion deposition process (FDM) resulted in 
misshaped markers that were difficult to find in the scanned 
model. From these groupings the algorithm recovers widget 
type, placement and orientation.   

The scanned sculpture is processed and printed.  The housing 
and electronics are shown in Figure 2c.    Processing the 
scanned mesh involves adding mount points for electronics 
and other parts needed to implement a widget, splitting the 

housing to provide access to the interior, and adding snaps so 
the housing can be closed after assembly.    

The designer can then use the prototype in the intended 
context as shown in Figure 2d.  This allows for evaluation of 
shape and functionality in ways that are difficult to do when 
looking at a shape on a computer screen or when using a 
prototype connected to a workstation by a cable. The 
designer can repeat the process either by starting over with a 
new sculpture, modifying the existing sculpture or modifying 
the scanned model in software.  

This design process and the process in Makers’ Marks [11] 
share four key elements.  Both involve tangible 
representation of the device shape, scanning the 
representation to recover the shape, recovering interactive 
widgets from the scanned model, and the automatic 
placement of mounting geometry to support interactive 
widgets.   

The key difference between the Makers’ Marks design 
process and ours is that we represent the physical constraints 
of widgets to the designer in a natural way using a 3D printed 
blank. Blanks accurately represent a widgets shape above 
and below the object surface. Makers’ Marks indicate only 
the widgets position using a stickers as markup on the object 
surface. In Makers’ Marks the design may have to be 
perturbed to accommodate constraints not represented by 
stickers.   

These two methods offer different design experiences.  
Stickers are easy to reposition on the surface while moving a 
3D printed blank embedded in clay involves moving the clay, 
repositioning the blank, and replacing the clay.     
Furthermore 3D printed blanks must be placed inside the 
object.  In order to properly represent the spacing inside of 
the object we do not allow approaches like the taping 
together of cardboard tubes as in Makers’ Marks’ box 
example [11]. However this approach could be replicated 
with more effort by cutting holes in the tubes to place the 
printed blanks inside.      

The power of our approach lies in the fact that the designer 
can manipulate the design without the extra cognitive load of 
assessing the internals of the design. Thus if the desired parts 
fit in the design, then it will be possible to assemble the 
object without further adjustment. Several problems need to 
be solved to full enable this “what you sculpt is what you 
get” design process based on clay and 3D printed blanks.  
These problems are:  

• ensuring that widget placements in the sculpture 
can be implemented as placed,  

• finding fiducial markers in the scanned mesh,  
• grouping fiducial markers into individual widget 

placements, 
• recovering widget type, position and orientation 

from widget placement,  
• creating the housing by adding mounting points and 

Figure 3 In this scanned model of a sculpted prototype, 
vertices on fiducial markers are colored red. 



• splitting the scanned model for easy assembly and 
adding snaps to hold it closed after assembly.   

In the following sections we describe how we solved these 
problems and share insights gained along the way. 

FINDING FIDUCIAL MARKERS   
Our process depends on being able to automatically recover 
the type, position and orientation of each widget using only 
a scanned model (mesh) of the design.  To do this we need 
to recover the locations of the fiducial markers that identify 
each widget type and placement.  This involves traversing 
the vertices in the mesh and labeling vertices that lie on one 
of these markers.   Figure 3 shows markers colored red in a 
rendering of a scanned model of the sculpture from Figure 
2b. 

Cones with height 3 mm and a base diameter of 2 mm serve 
as markers.  We chose cones because they have a single point 
with unique curvature.  Cylinders also have unique 
curvatures, but the unique curvature is found on every point 
of the rim rather than just one on the tip.  We experimented 
with several cone heights and base diameters before using 
the 3 mm tall cones with 2 mm bases.  Smaller, shorter cones 
were difficult to locate in scanned meshes.  Larger, taller 
cones poked into the designer’s fingers and were more 
distracting than smaller cones.   

We find the tips of cones in the scanned mesh by analyzing 
the slope at each vertex.  The scanned mesh consists of 
vertices, or points, and edges connected into triangles.  At the 
tip of a cone, the surface slopes downward in every direction.  
The algorithm computes the slope in the direction of the 
neighboring vertex.  If the slope is downward in every 
direction, then that vertex must lie on a cone.   

We compute the slope to a vertex as shown in Figure 4. To 
find the slope at 𝐴𝐴 in the direction of vertex 𝐵𝐵 we first 
compute the vector 𝑛𝑛 which is the normal at 𝐴𝐴.  The vector 
𝑛𝑛 is perpendicular to the surface at 𝐴𝐴 and is computed by 
averaging the normal for the triangles that share 𝐴𝐴 as a 
vertex.  Given 𝑛𝑛 and 𝐵𝐵 we compute a coordinate system at 𝐴𝐴 
in which 𝑛𝑛 points in the positive 𝑧𝑧 direction and 𝑥𝑥 is 
perpendicular to 𝑧𝑧 but parallel to the line that connects 𝐴𝐴 and 
𝐵𝐵.  In Figure 4 the 𝑥𝑥 axes from 𝐴𝐴 to each of the other vertices 
are shown in red.  We project the position of 𝐵𝐵 into this 
coordinate system and then compute 𝑑𝑑𝑥𝑥, the change in 𝑥𝑥, and 
𝑑𝑑z, the change in 𝑧𝑧, from 𝐴𝐴 to 𝐵𝐵.  The slope from 𝐴𝐴 to 𝐵𝐵 is 
𝑑𝑑𝑧𝑧/𝑑𝑑𝑥𝑥.   

We repeat the process for neighboring vertices 𝐵𝐵,𝐶𝐶,𝐷𝐷 and 𝐸𝐸 
(and for vertices not shown in the illustration).  For each 
neighbor we compute a new coordinate system in which 𝑥𝑥 is 
parallel to the line from 𝐴𝐴 to the neighbor, and then compute 
the slope 𝑑𝑑𝑧𝑧/𝑑𝑑𝑥𝑥 in that coordinate system.     

After computing the slope in each direction we check that 
each slope is within the range -0.6 to -1.5.  If any slope is 
outside this range then there is a direction on the surface in 

which the slope is too flat or too steep for that vertex to lie 
on the tip of a scanned fiducial marker.   

We tried classifying vertices using an estimate of signed 
mean curvature. The signed mean curvature is the average of 
the principle curvatures at a vertex.  The principle’s 
curvatures are the largest and smallest local curvatures, and 
the local curvatures are precisely the slopes computed using 
𝑑𝑑𝑧𝑧/𝑑𝑑𝑥𝑥 as described above.  But signed mean curvature loses 
too much information and misclassifies more vertices than 
the threshold method described above.  A key feature of a 
vertex on a bump is that all normal curvatures lie within a 
given range not just that the average of the minimal and 
maximal normal curvature. 

We compute the slope to the neighbors two edges away from 
a vertex rather than using vertices only one edge away.  In 
Figure 4 this means we use the slope to the vertices circled 
in blue rather than vertices 𝐵𝐵,𝐶𝐶,𝐷𝐷 and 𝐸𝐸. This gives a larger 
span over which to estimate slope, and makes the algorithm 
less sensitive to noise.  This decision depends on the mesh 
being at a certain resolution relative to the size of the bumps 
in a blank.  It works well when a vertex on a bump top has at 
least 2 generations of neighbors that also lie on the bump.   

This method for finding vertices on fiducial markers is 
insensitive to changes in mesh resolution.  Reducing the 
resolution of the mesh matters because processing a mesh 
with fewer vertices takes less computational time and 
memory.  The mesh resolution reduction algorithm we used 
preserves a dense collection of vertices on curvy parts of the 
mesh and leaves a sparse collection of vertices in flat areas.  
This is because one flat triangle approximates a flat plane just 
as well as many flat triangles.  Because the fiducial markers 
are curvy, they are left with many vertices which simplifies 
labeling vertices that lie on them.   

Figure 4 Close up view of mesh vertices on a scanned fiducial 
marker.  We locate vertices on the marker by computing the 

slope from a vertex to neighboring vertices. 



The algorithm often finds several vertices per bump in the 
scanned mesh.  For example in Figure 4 vertices 𝐵𝐵,𝐶𝐶,𝐷𝐷 and 
𝐸𝐸 might also be labeled as lying on bumps.  In our approach 
it is better to identify several vertices on bumps than to miss 
all of the vertices on a bump.  Finding several vertices per 
bump causes the widget location algorithm to find many 
widget placements (15 is average) per actual widget blank 
embedded in the mesh.  This happens because each vertex on 
each bump can be grouped with several vertices on other 
bumps to create a valid placement.  Figure 5 shows vertices 
labeled on a marker and the connections found on 
neighboring markers.  Each colored line is part of a different 
widget placement found by the algorithm.   We handle these 
duplicate placements by merging placements that are in close 
proximity as described in the next section.    

Cones used as fiducial markers can be reliably located in the 
scanned model and this supports recovery of widget type, 
placement and orientation.  Recovering widget placement 
information is a necessary step in automatically converting a 
scanned sculpture into an interactive prototype with working 
widgets.   

FINDING WIDGET PLACEMENTS  
Finding fiducial markers alone does not identify the type or 
placement of widgets.  What we need to know is which 
groups of markers represent a widget placement.  The 
algorithm that groups markers into placements should ignore 
mislabeled vertices that do not actually lie on markers and 
should find only the valid widget placements.   

Figure 6 shows widget positions and orientations recovered 
from vertices marked on the scanned mesh.  Markers are 
highlighted with colored balls, the plane of the widget is 
shown with a blue triangle and a vector perpendicular to the 
plane is shown in purple.   Other colors in the image 
correspond to the vertex order and will be explained in the 
next section.   

The grouping algorithm searches through combinations of 
labeled vertices to find groups that match the relative 
positions of markers printed into widgets.  The markers on a 

widget are always arranged into unique asymmetric groups 
of 4 markers.   

Although 3 markers are sufficient to recover position and 
orientation, we use 4 markers per widget. Using 4 markers 
rather than 3 eliminates many false positives when finding 
widget placement.  With 3 bumps there are 3 distances to 
check.  With 4 bumps there are 6 distances to check between 
every pair of bumps.  Checking more distances allows the 
algorithm to exclude more spurious placements.  

When checking distances between markers, the algorithm 
has a tolerance of 0.7 mm.  In our tests, we found that about 
75% of the distances between vertices on bumps in a widget 
placement were within 0.5 mm of the expected distance.  The 
other 25% of the distances were between 0.5 and 0.7 mm of 
the actual distance with larger errors over larger distances.   

The algorithm searches through every feasible ordered 
combination of up to 4 vertices starting with ordered pairs of 
2 labeled vertices.  We reduce the search space by only 
searching through labeled vertices that are close enough to 
the starting vertex.  If the greatest distance between two 
bumps on a widget blank is 31 mm then we only search 
through labeled vertices within 31.7 mm of a given vertex.  
The additional 0.7 mm accounts for tolerance in distance 
matching.  

After finding all widget placements the algorithm merges 
placements in which the center of the placement is closer 
than 2 mm to the center of another placement.  In most cases 
the actual distance between any two placement centroids is 
either less than 1 mm or greater than the width of a widget 
blank on the surface.  Merging nearby placements smooths 
out noise in the widget placements found when several 
vertices are marked on each marker location.     

Finding the widgets in the scanned sculpture is the key step 
in supporting a design process that includes widgets 
embedded into clay models.  With the bump grouping and 

Figure 5 Each colored line connects a marked vertex to 3 other 
marked vertices with together represent a widget placement. 
Duplication is due multiple labeled vertices on each marker. 

Figure 6 Widget placements recovered by searching for 
properly spaced clusters of 4 markers and then merging 

duplicate cluster that lie in close proximity. 



placement information, we now have what we need to 
compute widget placement. 

RECOVERING WIDGET TYPE AND ORIENTATION  
In order to save designer time and effort by automatically 
placing widget mounts, the algorithm needs to know the type 
and orientation of the widgets.  This information needs to be 
recovered from the 4 fiducial markers that represent the 
widget placement.   

The widget type is encoded by a unique arrangement of the 
4 markers.  In this scheme the 4 markers printed into any 
given widget are positioned at different distances from each 
other than the 4 markers on any other widget.  

After recovering the widget type, the algorithm keeps only 
the first 3 marker locations rather than all 4.  Each marker is 
numbered and the number is used to compute orientation.  
We recover vertex numbers from the distances between 
fiducial markers.  The distance between every pair of 
markers is different for a given widget type.  Once the four 
markers are found, it is simple to match the distances and 
recover the marker numbers.    The plane of the widget 
placement is defined by markers 1 through 3.  In Figure 6 
each blue ball gives the location of marker 1 for each widget 
placement. The yellow line connects marker 1 to 2 and the 
magenta line connects marker 1 to 3.  The plane is shown by 
the blue triangle.  The widgets at the top of the model are 
both buttons but one is rotated 180 degrees compared to the 
other.  The bottom widget is a slider 

The markers used to determine the plane of the placement 
should be as far apart as possible, should not lie in a single 
line and should form a right triangle if possible.  This gives 
a larger basis for defining the plane and is less sensitive to 
noise introduced in scanning.  

Given widget placement, orientation and type, the algorithm 
can now modify the scanned mesh to create a 3D printable 
housing for the prototype.  This will save designer time and 
effort as the designer does not need to make these 
modifications by hand.   

MODELING WIDGETS  
Prototyping with printed widget blanks embedded in clay 
requires building two models based on the widget geometry.   
These models ensure that the widget can be implemented in 

the space allotted and provide fiducial markers for recovery 
of placements.   

Modeling the widgets is not part of the prototype 
construction process but needs to be done before the process 
begins.  It needs to be done once per widget type and requires 
CAD skills.  Widget models are based on an accurate 3D 
representation of the widget which includes everything 
needed to interact with the widget and to implement the 
widget.   

Several additional models are derived from the base widget 
model.   These are shown in Figure 7 with a composite view 
on the left. The base widget model is shown in blue.  The 
base model is in this figure is a knob implemented using a 
potentiometer.  The mounting bracket is a plate shown in 
solid orange.  This widget attaches to the housing by 
attaching it to that plate.  Other widgets have more complex 
mounting geometry and this would be included as part of the 
mounting bracket.  The grey box is called the “slug” and used 
to cut a hole in the housing to accommodate the mounting 
bracket. The printed blank that represents this widget 
consists of the mounting bracket and the yellow offset mesh.   

The yellow geometry below the plate is a mesh offset by 3 
mm from the widget in order to allow space for the widget in 
the sculpture interior.  In this context, offsetting the mesh 
means moving every vertex in the mesh 3 mm along that 
vertex’s normal.  The offset vertices are remeshed to create 
a mesh that is 3 mm from the original mesh.  Adding this 
offset to the printed blank allows the designer to sculpt down 
to the printed widget model while still leaving room for the 
housing wall to enclose the widget.  Without this offset the 
designer must guess where the widget is inside the opaque 
modeling clay.   

The four fiducial markers need to be added to the visible 
parts of the orange plate or the visible parts of the blue model 
above the orange plate.  If the 4 markers do not lie on the 
plane of the orange plate then the widget model must also 
include the angles between the plane of the first 3 markers 
and the plane of the orange plate.   

Figure 7 Widget, blank, and slug models for a potentiometer knob. 



We also include 3D printed blanks to represent additional 
electronic components, such as a processor or a battery, that 
are completely enclosed in the housing. These blanks are 
included in the sculpture to make sure that there will be 
enough space for those parts in the printed prototype without 
modifying the housing shape.  For the devices shown in this 
paper, we used blanks to represent the volume of an Arduino 
processor and a battery and embedded those in the sculpture.   

We do not locate the blanks that represent embedded 
electronic components that lie completely within the housing 
because they are hidden beneath the surface.  We also do not 
add mounting brackets for these elements.  Instead, the 
designer must remember which enclosed electronics belong 
in the housing and place them by hand.   

The blank, slug, bracket and parts should be stored in the 
same coordinate space in the positions relative to each other. 
By convention, we stored the widget with the tip of marker 1 
on the origin and the tip of marker 2 on the positive 𝑥𝑥 axis.  
Markers 1, 2, and 3 all lie on the 𝑥𝑥𝑥𝑥 plane.  The vector created 
by taking the cross product of the vectors connecting marker 
1 with 2 and 1 with 3 points in the positive 𝑧𝑧 direction.  This 
relative placement and alignment is important because it 
means we know the position and orientation of the parts 
when they are read into the scanned model space.  Any 
alignment with the model coordinate system will suffice, but 
it must be unambiguous.     

The widget and associated models can now be used in their 
printed form in sculpting and can be loaded in digital form to 
prepare the prototype housing for printing and assembly.  
The investment in modeling time and effort needed to create 
the widget models pays of in time and effort saved later 
during prototyping. 

CREATING A HOUSING FOR THE PROTOTYPE 
Creating a housing involves 4 steps:  cutting holes for the 
interactive elements that support widgets, splitting the 
housing to allow assembly, adding snaps so the housing can 
be closed after assembly, and adding mounting brackets and 
other parts for each widget.  These steps are shown in Figure 
8, as will be explained in the text below, beginning with the 
scanned sculpture in Figure 8a and ending with the final 
printable housing in Figure 8d.  

Cutting holes for widgets. Holes need to be cut so that 
interactive widgets can be exposed on the prototype surface.  
For each widget placement, the algorithm loads the slug, this 
is the grey box in Figure 7, which encloses all of the volume 

needed for interactive elements and for mounting brackets.  
This slug is shown in brown in Figure 8b.  The holes are 
created by a Boolean subtraction operation which subtracts 
the slug from the scanned mesh.  The holes are visible in 
Figure 8c (which also shows the housing split into two pieces 
for assembly).    

Splitting the housing.  Assembling widgets for the interactive 
prototype requires access to the interior of the housing.  We 
provide that access by splitting the housing into two pieces.  
The split must provide a large opening through which 
electronics can be moved into position.  We find a plane for 
splitting the housing by evaluating 1600 different planes that 
intersect the housing.   Figure 9 shows the feasible planes 
explored for a mesh with the final selection shown in red.  A 
splitting plane is feasible if it passes through the mesh inner 
and outer walls and does not intersect a hole cut for widget 
placement.  The optimal splitting plane creates the largest 
opening in the housing.  The area of the opening is the area 
of the polygon created on the plane when the mesh is 
intersected with the plane.  The plane with the largest area is 
selected and used to split the housing mesh.   

Adding snaps.  The housing pieces need to be fastened back 
together after assembly.  The algorithm adds between 6 and 
12 post and hole pairs to the matching faces created by 
splitting the housing.   The posts and holes can be seen 
Figures 8c and 8d.  Posts with radius 1.3 mm proved durable 
in assembly and reassembly of the printed housing.  Larger 

Figure 8 Creating a 3D printable housing from a scanned mesh of sculpted prototype. 

Figure 9 Finding a plane to split the housing.  The red 
plane was selected from the feasible candidates shown in 

yellow. 



posts would have been more durable but posts and holes need 
to be small enough to fit on the rim created in the mesh wall.     

The hole radius is 0.35 mm larger than the post radius so that 
the printed post makes a friction fit into the printed hole1.  
The friction fit was tightest when the housing was printed 
with the plane of the rim parallel to the plane of the print 
head.  Small ridges created in the layer by layer deposition 
process left small ridges in the post and hole and these ridges 
fit snugly together with the 0.35 mm tolerance.  Other 3D 
printing process may require different approaches to adding 
snaps.   

Placing brackets.  Brackets and other printed pieces needed 
to implement widgets are added next.  These are shown in 
green in Figure 8d and correspond to the orange bracket in 
Figure 7.  The geometry for brackets and other pieces for 
each widget placement are loaded, rotated and translated into 
position.  Brackets are joined to either the top or bottom of 
the split housing using a Boolean union operation.  Moving 
parts that are not attached to the housing are simply left in 
place to be printed in place. 

These modifications to the mesh yield a housing for a 
functional prototype that is ready for printing and assembly. 

  

EXAMPLES  
We have constructed several interactive physical computing 
prototypes using this process.  Prototypes were created by 
two undergraduate university design students who are part of 
the research team but who did not write any of the software 
described above.  In each case sculpting required less than 
30 minutes of the designer’s time, converting the scanned 
mesh into a printable housing required pressing a button to 
start the algorithm.  The algorithm correctly found widget 
placement, orientation and type and then prepared the 
housing for printing and assembly.  All sculptures were 
assembled into functional prototypes.    These prototypes are 
each shown in Figure 1.  Four other devices were sculpted by 
different users and correctly processed by the algorithm to 
create housings that could be printed and assembled.     

Each prototype involves a different hand position relative to 
the interactive widgets.  This means that each prototype 
shape accommodates different motion of the fingers, hand or 
arm.  Sculpting gives the designer tactile feedback on 
position and shape needed to support each motion in each 
context.  The camera remote is hand-held.  The bike mounted 
mp3 player control requires moving the arm to access the 
controls.  The steering wheel mounted controller only 
requires moving the thumb.   

Bike mounted mp3 player controls. Using this device 
involves moving the entire arm while seated on a bicycle.  

                                                           
1 When printed on a Stratasys Dimension Elite at a layer 
resolution of 0.25 mm.   

During sculpting the designer sat on a bicycle with the clay 
wrapped around the bicycle tube that connects the handle 
bars to the seat (this tube is called the “top tube”).  This let 
the designer check the required arm motion in context.  The 
sculpture wrapped just less than half way around the top tube 
so that it could be removed for scanning without cutting or 
moving the clay.  The printed controller was attached to the 
top tube using a thin layer of wet clay.  This was sufficient 
for short test rides (as seen in Figure 1) but double sided foam 
tape or a stronger adhesive might be needed for longer term 
testing.   

Placing the controller on the top tube is reminiscent of 
placement of bike gear shifters on the tube connecting the 
handlebars to the crank arm assembly (this is called the 
“down tube”).  More recent bicycle models put shifters on 
the handlebars.  After testing the interactive prototype on a 
bicycle ride the designer might decide to place the controls 
on the handlebars, the down tube, or somewhere else.  In 
either case, designing a new prototype likely involves 
another 30 minutes of sculpting and pressing a button to 
create the housing.   

Steering wheel mounted mp3 player controls.  Unlike the 
bike mp3 player controller, the steering wheel mounted 
version does not require moving the entire arm.  Placing the 
controller in the right position on the steering wheel itself 
allows it to be used with the thumb without changing the 
hand’s grip on steering wheel. 

Sculpting the controller shape saved time in two ways in this 
example.  First, the clay and widget models could be pressed 
into a hole cut in the steering wheel.  This gave the prototype 
housing a shape that would fit in the cut out.  Achieving this 
fit in a CAD tool would require more time.  Second, it was 
easy for the designer to hold the steering wheel with the 

Figure 10  A widget set together with printed blanks used in 
sculpting.  The widgets are a button on the top left, a knob on 
the top right and a slider on bottom.  The button includes a 
complex mounting bracket printed in white and a moving 

plunger. 



sculpture in place and test the thumb motion needed to reach 
the controls.   

An interactive prototype of this controller intended to fit a 
different steering wheel could also be constructed by forming 
clay on that steering wheel and would likely involve only 30 
minutes of sculpting time.   

Camera remote.  This prototype is a handheld camera remote 
control.  The intended use is to be held in the photographer’s 
hand while they move away from a camera to compose a 
picture or to be in a picture.  The prototype includes a slider 
under the thumb for controlling zoom and a button under the 
index finger for taking a picture.  It should be usable while 
looking at the composition or at the camera itself.  This 
means that the interactive widgets should lie under the 
fingers for easy use without looking at those widgets.   

Sculpting around the printed widget models let the designer 
quickly and accurately place controls under fingers when the 
device held in the hand. The sculpture required less than 20 
minutes to create which was the shortest amount of time 
across all examples.  The final shape was rough but could be 
refined in either clay or software if testing the functional 
prototype confirmed that this was a useful application.   

A WIDGET SET 
Constructing interactive prototypes required a widget set. 
We need a widget set that keeps the prototype design cycle 
fast and simple while preserving the feel of interaction with 
physical objects.  This meant using widgets that are simple 
to assemble, can be printed in any orientation, and which 
provide good haptic feedback.   

After reviewing several widget sets for 3D printed prototypes 
(see [8, 9, 11] for recent examples) we designed our own 
widget set based heavily on using existing electronics to 
convert interaction into electrical signals.  Using existing 
electronics gave up some flexibility in design options but led 
to simple assembly while providing good haptic feedback.  
In principle, 3D printable blanks, brackets and slugs as 
described earlier could be designed and for any of the 
widgets in [10, 12, 14].  Having a collection of blanks for 
these widgets on hand would allow the designer to quickly 
switch between widget types depending on the needs of a 
project.   

The widget set contains a button, a slider, and a knob.  Figure 
10 shows the widgets together with the printed form used in 
sculpting.  The knob is a potentiometer knob, the slider is a 
potentiometer slider and the button is a clickable button on a 
breakout board2.   The button includes a mounting bracket to 
hold the breakout board in place, a moving plunger and an 
enclosure.  Choosing a pre-made potentiometer slider limited 
our designs to straight run sliders with limited lengths.  
                                                           
2 We used a 10k Ohm rotary potentiometer knob (Sparkfun 
part 09939), small 10k linear taper potentiometer slides 
(11602), and a mini push button switch (97).     

Custom printed sliders would have allowed for curved paths 
and more flexibility in length.  We added additional haptic 
feedback to the button by placing two ring magnets with 
polarity mismatched on the button plunger shaft.  The 
magnets are placed in the enclosure after printing.  This 
creates a force that restores the button to its idle position after 
a button press.   We also explored several print-in-place 
options for providing haptic feedback with the button but the 
motion varied widely with the print orientation relative to the 
plane of the 3D printer tray.   

All widgets are connected to an Arduino board3 with 
Bluetooth.  The Arduino board provides power, ground and 
processes signals from each widget.  The Arduino board 
sends events over Bluetooth to a host for processing.   

RELATED WORK  
Our work builds on ideas from Switcheroo [1] and Calder 
[9].  Each of these projects was focus on how to integrate 
interactive devices with physical shape design.  In 
Switcheroo, passive RF tags could be pinned to a foam 
surface to place interactive widgets.  The Calder project took 
a similar approach, but involved pinning actual electronic 
elements to foam.  This meant that interactive widgets could 
be quickly repositioned as the designer explored the feel of 
the placement of each element.  In Calder however, 
interactive elements protrude from the surface unless the 
designer creates a cavity in which to embed electronics.  This 
cavity fixes the widget placement and eliminates fluid 
repositioning.  Working with clay, and an oil-based clay in 
particular, allows the widget to be embedded in the object 
and to be repositioned as needed.  Printing a representation 
of the widget ensures that elements beneath the surface will 
fit in the prototype.   

Hartmann and Klemmer [6, 8] frame physical design as 
conversations with the design medium such as clay, paper or 
foam core, and point to Schoen's reflective practice [13] as a 
foundation. They were focused on device integration and 
software and argue that iteration through prototypes is 
important for designers to understand a problem. Our work 
shares this foundation but we focus more on integrating the 
physical shape with the interactive electronics.  

The BOXES project merges form and function early in 
prototyping physical interactive objects [7].  Clever use of 
cardboard, foil, thumbtacks and masking tape allows a 
designer to quickly iterate through different shapes and place 
buttons on those shapes.  Our process is a bit less fluid than 
cutting cardboard, but supports a richer set of shapes and 
interaction methods beyond buttons.  As with some of the 
other work, the prototype was a mass of tethered wires that 
was impossible to deploy in a realistic context. 

3 A RedBearLab Blend Micro Arduino board.    



Savage et al. in Makers’ Marks [11] merge form and 
functionality in the context of 3D scanning and printing.  
Approximate widget positions and widget types are 
recovered by using SIFT and RANSAC to recognize fiducial 
marks printed on stickers.  Our process uses only the sculpted 
object geometry and does not require recovering the 
sculpture’s surface color and does not use image processing.   
Makers’ Marks supports mechanical elements such as 
hinges.  In principle our process could as well by embedding 
3D printed representations of hinges in the clay.   

deForm [4] combines the expressiveness of clay with digital 
interaction using a pair of structured light scanners.  While 
the process is limited to 2.5D deformed surfaces rather than 
arbitrary 3D shapes, the process may support a fluid 
environment for creating and modifying interactive physical 
devices.   

In DisplayObjects Akaoka et al. [1] also argue for early 
merger of prototype form and interaction, but take a different 
approach based on projecting interfaces onto solid objects.  
This leads to interesting simulations but is not deployable 
into usable scenarios. 

Many projects have constructed sets of interactive widgets 
for physical computing and prototypes.  They differ 
primarily in the mechanism used to detect interaction.  
Interaction has been created using sound [12], pneumatics 
[14], light [10] and of course electricity [15, 4].   Our focus 
is different however.  Our focus is on supporting the creation 
of shapes to house the interactive elements, and to do so in 
such that the shape fits human form and motion.  In principle, 
any widget set could be used with our process given 
appropriate modeling of each widget.   Voodoosketch [3] 
merges physical widgets with sketched interfaces on 
interactive surfaces but does not contemplate 3D interactive 
physical devices.   

 

SUMMARY AND FUTURE WORK 
Sculpting keeps physicality in prototype design.  We 
presented a fast and simple method for converting a scan of 
the sculpture into a printable interactive prototype.  The 
method eliminates CAD skills from the process.  The 
algorithms described were implemented in C# to run in the 
RhinoCommon API in Rhinoceros 54.   

This method depends on printing 4 cone shaped fiducial 
markers into models of widgets embedded into the sculpture.  
Vertices with negative local slope in every direction are 
labeled as lying on fiducial markers because cone tips have 
negative local slope in every direction.  We group labeled 
vertices into widget placements by matching the distance 
between groups of markers against marker locations on each 
                                                           
4 See www.rhino3d.com  

widget.  Widget type and orientation are recovered from the 
groups of 4 markers.  Finally, the scanned mesh is modified 
based on the widget types, locations and orientations.  The 
printed housing can be combined with electronics to make an 
interactive prototype.  

A key factor in saving designer time and effort is that if 
widget blanks fit in the sculpture then widget electronics and 
parts will fit in a housing with the same shape and size.  This 
prevents sculpting a shape and placing widgets that later 
prove to be infeasible for the given shape.  

Future advances in 3D scanning and printing technology will 
significantly improve this prototyping process.  Scanning 
and printing sculpted prototypes require significant time and 
effort. Preparing hollowed out scans of sculptures in our 
example required about 30 minutes of focused effort over the 
course of an hour by an experienced user5.  The housings in 
our examples required 8 to 12 hours each to print.  The 
designer is free to do something else while they wait, but this 
adds time to the prototype iteration cycle.   

There is no guarantee that the splitting plane found by our 
algorithm will result in an opening that allows electronics to 
be inserted into the housing.  The algorithm worked well in 
all of our examples—even though designers were not told to 
consider the feasibility of splitting the housing for assembly.  
Several methods could be explored to ensure that the split 
allows assembly.  The housing could be split with a curved 
surface that would allow more possibilities. The function for 
scoring candidate splits consider the size of the largest object 
that will through an opening rather than just the area of the 
opening.  In some cases it may be necessary to split the 
housing into more than 2 pieces. 
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